
ISU POS Design System
DESIGN DOCUMENT

Team 4

Tina Prouty (Adviser) Maruf Ahamed (Academic Advisor)

Elisabeth Bair (Meeting Facilitator), Andrew Goluch (Frontend Lead), Lucas
Bell-Steckel (Backend Lead), William Peng (Full-Stack Coordinator), Cavin Leeds

(Test Engineer), and Thomas Hotard (Report Manager)

sddec21-04@iastate.edu

https://sddec21-04.sd.ece.iastate.edu/

Revised: April 21st, 2021 Version 3.0

Development Standards & Practices Used
Life cycle management, software testing standards, and development

environment considerations were used.

Summary of Requirements

● Support the creation of programs of study for Electrical, Computer,
Software, and Cyber Security Engineering majors

● Require students to accurately complete a program of study with the goal of
graduation

● Provide warnings for missing classes or courses being added without
prerequisites

● Enable students to edit their program of study
● Allows advisors to add new classes to the program
● Classes are able to be labeled as required, based on a given catalog year
● Individual courses are able to have prerequisites that must be met within

the POS
● Advisors must be able to approve exceptions to general requirements
● Advisors are able to give feedback to a student’s POS

Applicable Courses from Iowa State University Curriculum
Courses most applicable to this project are COMS 309, SE 329, and COMS 363.

Other courses have added to general problem-solving skills and are indirectly

applicable.

New Skills/Knowledge acquired that was not taught in courses
We project to acquire new knowledge and in JavaScript, MySQL, and

HTML/CSS. As well as acquire a better knowledge of scripting to pull data from

websites using Python.

Table of Contents
1 Introduction 6

1.1 Acknowledgment 6

1.2 Problem and Project Statement 6

1.3 Operational Environment 6

1.4 Requirements 7

1.5 Intended Users and Uses 7

1.6 Assumptions and Limitations 7

1.7 Expected End Product and Deliverables 8

Project Plan 9

2.1 Task Decomposition 9

2.2 Risks And Risk Management/Mitigation 9

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 10

2.4 Project Timeline/Schedule 11

2.5 Project Tracking Procedures 11

2.6 Personnel Effort Requirements 12

2.7 Other Resource Requirements 13

2.8 Financial Requirements 13

3 Design 13

3.1 Previous Work And Literature 13

3.2 Design Thinking 14

3.3 Proposed Design 15

3.4 Technology Considerations 16

3.5 Design Analysis 16

3.6 Development Process 17

3.7 Design Plan 17

4 Testing 18

4.1 Unit Testing 18

4.2 Interface Testing 19

4.3 Acceptance Testing 19

4.4 Results 19

5 Implementation 19

6 Closing Material 20

6.1 Conclusion 20

6.2 References 20

6.3 Appendices 21

Figures
Figure 1: Project Timeline Gantt Chart Pg. 11

Figure 2: Front-end Component Diagram Pg. 17

Figure 3: Back-end Component Diagram Pg. 18

Figure 4: Sketch of potential website design Pg. 21

Tables
Table 1: Risks and Mitigation Pg. 9

Table 2: Milestones and Metric Pg. 10

Table 3: Tasks Efforts Requirements Pg. 12

Definitions

Term Definition

Program of Study
(POS)

The Program of Study, or POS, as referred to here in this document
is the plan of courses for a student majoring in Computer,
Software, Electrical, or Cyber Security Engineering. This list of
courses includes personal choices to fulfill all major requirements
and is the basis for the project.

Advisor An advisor is a staff member of the Computer, Software, Electrical,

or Cyber Security Engineering departments responsible for helping
students choose courses and fulfill the requirements for
graduation. Advisors also teach courses where students are
required to create and submit an accurate POS for a grade.

Student A student is any student majoring in Computer, Software,
Electrical, or Cyber Security Engineering using the electronic POS
tool to design their POS. A student also may be a participant in the
166 course being evaluated on their creation of a POS by an
advisor.

1 Introduction

1.1 ACKNOWLEDGMENT

Special thanks to Patrick Determan, a colleague of Tina Prouty, who contributed valuable insight to
the design and functionality of this project.

1.2 PROBLEM AND PROJECT STATEMENT

Every student who attends Iowa State has certain coursework requirements they need to fulfill
before they graduate. Meeting all requirements can be confusing and overwhelming, especially to
freshman students who have a lot to learn and little experience with the courses available. Because
of this, every student in the Electrical and Computer Engineering Department (including Software
and Cyber Security Engineering majors) needs to create a Program of Study (POS) in their
Introduction to Engineering course. These programs are checked by hand, taking enormous
amounts of time and leaving room for mistakes to be made.

The solution to this problem is an Electronic Program of Study. This program will be electronic and
create a simple and effective tool for the creation of a student’s POS. This tool will include features
like prerequisite checking, graduation requirement assurance, different course requirements based
on student catalog, and more. All of these features will aid advisors and students to maximize their
time and provide powerful knowledge to ensure success in the selection of classes.

By the end of this project, there will be a web application with the capability to store, update and
validate the Programs of Study for students in Electrical, Computer, Software, and Cyber Security
Engineering. Students will be able to create this POS, and advisors will be able to view students’
POS, update available courses, and approve exceptions to general prerequisites and requirements.
This program will be accessible via an Iowa State account and will require minimal software updates
going forward, making this a tool that can be used well into the future.

1.3 OPERATIONAL ENVIRONMENT

The Electronic POS application will be a web application capable of being used in any popular and
well-supported web browser. The use of a web browser can present some hazards during production
of the product. One such hazard may be integrating existing user authentication with our
application. One design decision was not to incorporate a new database of users, but to instead
have the students use their existing login credentials provided by Iowa State. That means we have to
incorporate existing google login verification into our application, which means the application will
need to accommodate the settings that google requires to verify account information. This may or
may not include cookies or other settings that can affect how google reads login settings or data.

Another possible hazard we are taking into account is the possibility of dealing with different
browsers or versions of browsers that students could possibly use. Different browsers/versions can
cause differences in page layouts and user interactions which we will need to take into account. This
hazard can completely change how our web application functions for different users and we will
need to be prepared to account for variables in student environments.

A future hazard that we will need to address is the longevity of our application through changing
APIs. The project will require us to use existing APIs to build our application effectively, and as time
passes, APIs will change/or become deprecated. The application must be able to evolve with the
changing of APIs and still function, as one of the design requirements is that the application must
be able to be modified and used over time.

1.4 REQUIREMENTS

● Support the creation of programs of study for Electrical, Computer, Software, and Cyber
Security Engineering majors

● Require students to accurately complete a program of study with the goal of graduation
● Provide warnings for missing classes or courses being added without prerequisites
● Enable students to edit their program of study
● Allows advisors to add new classes to the program
● Classes are able to be labeled as required, based on a given catalog year
● Individual courses are able to have prerequisites that must be met within the POS
● Advisors must be able to approve exceptions to general requirements
● Advisors are able to give feedback to a student’s POS
● Application can be used by future students and is maintainable

There are some functionalities not included in these requirements because they are not necessary
to a successful end product.

1.5 INTENDED USERS AND USES

In this project, there are two primary users- students and advisors. These users have different needs
and uses for this program.

First, students need a way to create a POS that can be a living document with immediate feedback
about accuracy and potential errors. Most students make some changes when they select their first
year at Iowa State, so they need to be able to access and edit their POS for at least four years after
creation. Students also need to have access to requirements and a list of courses that satisfy the
requirements of their catalog. They also need to receive notifications of advisor feedback and
identify errors and have some idea how to fix them.

Second and finally, advisors need to be able to make updates to degree requirements, access student
POS’s, and give feedback to students. One critical feature is the ability for advisors to approve
exceptions to the standard degree and course requirements. They also need to have access to all
student programs in an organized way. This will allow for time to be saved when grading the POS
assignment for the Intro to Engineering course.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions-

● This Electronic Program of Study will only be compatible and maintained for the ECPE
department and majors discussed in this document

● Minors and double majors, though nice to include, are not necessary to the success of the
project. Courses associated with programs outside of the majors mentioned may be added
to a POS but may not be checked for accuracy.

● The end product will be available only as a web app
● The end product of a POS will be available both in HTML on the student’s profile (and

advisor view) and as a downloadable pdf

Limitations-

● Canvas will not be used as the development environment due to extreme limitations and
hassle. The web application can be linked in a Canvas module.

● As a web application, the application will have limited functionality while not connected to
internet

● Due to the constantly changing University-wide course catalog, not every course will be
included in the program. Students will be able to enter their own course numbers/credit
amounts for gene eds and required courses and tech electives will be kept up to date

● The cost of server operation will be managed and funded by the ECPE department
● The end product needs to find a balance between usability and accessibility to ensure all

students can utilize it
● Students will need to find another colleges course equivalents if they are a transfer student,

as the application will not know any student information besides what they input
● Students will need to add in existing college credits from AP exams/high school, as per the

explanation for the previously listed limitation

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The end product will be a web application that will meet all requirements laid out above. There will
be user experience research and design based on that. There will be a few major deliverables to
meet the goals outlined in this introduction. Expected date: November 1, 2021

The first deliverable will be the student side of the application. The student side will include text
boxes for each of the semesters or some other way to clearly and intuitively input courses. It will
also include a “check the POS” button that generates specific warnings of inaccuracies or green light
that all coursework meets requirements. It will also include links to course lists, a spot for credits
being brought in from other universities and colleges, and have login features enabled. This will be
done at the latest halfway through the fall semester. Expected date: September 20, 2021

The second deliverable will be the advisor side of the web app. This will include the ability to view
the POS, modify courses and requirements, and approve exceptions to the norms. Advisors will
likely have the option to “bulk add” courses and requirements via a spreadsheet, or manually enter.
At this point, the minors and double majors will not be supported but everything else should be
functional. Most importantly, advisors will be able to have advisees assigned to them and see if their
POS has a green light or not. Expected date: October 18, 2021

2 Project Plan

2.1 TASK DECOMPOSITION

Phase 1. Planning

Task 1. Talk to client

Phase 2. Feasibility and Requirements Analysis

Task 1. Develop project plan

Phase 3. Design

Task 1. Design prototype

Phase 4. Software Development

Task 1. Setup database

Task 2. Create user interface

Task 3. Connect front and back end

Phase 5. Testing

Task 1. Test back end

Task 2. Test front end

Phase 6. Implementation and Integration

Task 1. Let some students try the software

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

Risks Probability Impact Mitigation

Late delivery of
software

30% 1 Set an earlier deadline
than the final
deadline to have some
flexible time for
accidents.

Technology will not
meet expectations

20% 1 Decide 1 or 2 more
alternative technology
at the beginning to
use if the original
decision does not
meet expectations.

Changes in
requirements

10% 1 Implement a modular
design so it is easier to
add or remove
functions.

Less reuse than
planned

40% 2 When finished
planning, ask the
advisor for advice.

Deviation from
software engineering
standards

10% 3 Check if our code is
still valid to the
standards every week.

Poor commenting of
source code

20% 3 Make sure to
comment the code
before pushing the
code to Git.

Table 1:. Risks and Mitigation

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestone Metric Finish Date

Get all requirements from
client

List of the requirements
requested by the client

April 7th, last client meeting
of first semester before
starting production of product

Develop a project plan No comments on what to fix
in the feedback

April 21st

Setup the database for one
major

All the course for one major
stored in a database

August 29th

Create a simple user interface An interface that can search,
drag, and drop course

September 5th

Setup the database for two
more major

Add all the courses for two
more major into database

September 5th

Create a more user friendly
interface

Design an interface that has
instructions for all functions

September 19th

Have a prototype of the
project

A sample app that a student
can use to perform all
functions

October 18th, the day 2nd half
semester courses begin and
the pilot group of students can
test

Complete project Satisfied all the requirements
the client requested

December 5th

Table 2: Milestones and Metric

2.4 PROJECT TIMELINE/SCHEDULE

The following Gantt chart is our project's estimated timeline. Our team has completed talking to
the clients and finished the designing the project plan. We are currently designing the prototype of
our project. Everything is on schedule by the submission of the project plan.

Figure 1: Project Timeline Gantt Chart

2.5 PROJECT TRACKING PROCEDURES

Our group will be using our provided GitLab repository to manage our code and track our progress.
Each group member will have their own goals to work towards and soft deadlines by which to
upload their code to Git. Certain aspects of the project may require git branching to implement,
which will be another way in which our group can track progress. Our use of the agile development
process will allow us to set our goals for ourselves individually and collectively before getting to
work and pushing our work to Git.

2.6 PERSONNEL EFFORT REQUIREMENTS

Requirement Explanation Estimate hours to complete

Get all
requirements
from client

Holding multiple conversations with clients to
determine the needs and possible solutions.
Includes presenting ideas to receive feedback
and improve our understanding of what we
want the project to become.

6 hours

Develop project
plan

Taking information from our meetings with
clients to develop the best product for the
client. Figure out the tools and techniques we
will use to create the product.

15 hours

Design
prototype

Plan the structure of our final design. Decide
how we want each component to interact with
each other component and the information we
will be sending to between them.

20 hours

Set Up
Database

Create the database schemas and how the tables
will interact. Enter in some basic information to
test the functionality and the usability of the
database design.

15 hours

Create User
Interface

Create our basic user interface to test the
entering of information and the usability of our
interface design.

20 hours

Connect front
and back end

Connect our basic front end and back end
designs to send information to each other and
interact fully. Discover and fix any problems we
encounter with the information being sent
between our front and back end designs.

10 hours

Improve User
Interface

Create a more user friendly interface which
utilizes the same techniques of sending and
receiving information, but presents the
information with usability in mind.

12 hours

Create
Prototype of
Product

Finalize a prototype to move into our testing
phase and improve upon for future user testing

8 hours

Testing Test front end and back end with as many use
cases as possible to find and fix code failures
and errors. Fix said failures and errors to move
the prototype into the user testing phase.

15 hours

User testing Let current students try the software and give
feedback on the shortcomings or problems they
encounter. Team will then use feedback to
improve the product and finalize our end

10 hours

product.

Finalize
Product

Finish polishing the product until it meets our
criteria and reflects the feedback we received
from students. Present final product as finished.

10 hours

Table 3: Tasks Effort Requirements

The entire project will take roughly 136 hours to complete. The number of hours it will take are also
split among multiple people working towards common goals in the project. For instance,
connecting the front end and back end will require 10 hours of combined work among all 6 team
members.

2.7 OTHER RESOURCE REQUIREMENTS

The only requirements our group will need are access to our git repository, working code editors,
database software (such as mySQL), and access to any subscriptions we may need to edit or test
code. The school will need to provide a server to support the application in the long term, though
not for most of the development process.

2.8 FINANCIAL REQUIREMENTS

The only financial requirements required to conduct the product would be server costs to support
the project for the classes in the long term. We do not believe at this time that we will need any
additional financial resources to fund the project, besides maybe some kind of subscriptions we
may discover we need to develop the final product.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

There are no similar products that exist, though the advisors of the EE/SE/CprE/CyE
departments have implemented certain procedures for the creation of a program of study for their
students. Some of the previous methods that advisors have had their students use to create their
program of study(POS) include filling out an Excel spreadsheet and filling out a pdf form. Both of
these previous methods come with serious drawbacks however, being clunky and tedious to fill in as
no convenient method to check for prerequisites or corequisites. They do have the benefit of being
commonly used formats and the software to edit them are readily available.

As with most software projects, this one will be divided into the front end and back end.
Each portion will be worked on in different languages, and this project will utilize at least two
primary languages. For the front end, the logic will be developed in JavaScript, and we are choosing
this language for a variety of reasons. Firstly, this is something the team has a good understanding

of as well as prior project experience. The second reason is the extensive amount of existing
packages designed specifically for web application design. We hope to utilize a wide range of these
libraries to deliver a solid, secure, and well-developed professional application. We have narrowed it
down to two initial frameworks. First, we will utilize jQuery for our event handling logic. The
second framework is Ajax. This framework allows us to have a highly dynamic and interactable
application. The primary use for this will be to develop an interactable flowchart based on the user’s
schedule. As our group runs into obstacles, we will continue to look for additional frameworks to
ensure the application meets or exceeds all requirements.

The web app needs to be intuitive, as this is something students will have to use, so it must
be accessible to a wide range of persons while acting comfortably. For the appearance of the web
application, the backbone needs to be Hyper-Text Markup Language or HTML. This is a
requirement by the internet for an interactive web application to existing. To add style to the
backbone, we will implement Cascading Style Sheets or CSS. This language gives us the ability to
add additional design options for the website. CSS will provide the traditionally bland HTML a
professional look to create an application that appears identical to any other Iowa State University
website.

The backend will be developed using python as we do not expect heavy load most of the
time. Therefore, we decided to use a language that is very common and easy to understand while
also being readily available to implement new functionalities without requiring much effort. While
having an interpreted language has some expansive drawbacks, we found that for our particular use
case, almost no heavy load, relatively low peak load, and lightweight architectural design, an
interpreted language such as python would be a perfect fit. While we could have chosen to code the
backend in javascript using NodeJS, more of our members had experience with python and are
more familiar with certain python libraries. We will be using two main libraries for our backend
implementation, those being Flask and MySQL. Flask will be used to create REST endpoints to
serve our frontend, helping to ensure safety and security through Flask extensions such as
Flask-Authorize and Flask-Authenication which have ways of working with Google’s login APIs.

3.2 DESIGN THINKING

The first core concept that this project was designed with was that it needs to be modifiable. New
classes should be able to be created by advisors or by automation.

● Application that utilizes Google sign in.
● Internal Database that holds the entire list of classes for major.
● Classes can be classified into different categories.
● Select classes from a drop down list.
● Automatically checks for prerequisites and corequisites.
● Academic advisors can view students’ POS.
● Academic advisors can comment on students’ POS.

There were other potential design choices that would not be necessary to the success of the project,
but that would potentially be nice in the final product. These design choices are ideas that we came
up with in the ideation phase of designing. Some of these ideas were the ability for advisors to view
the student live editing the POS much like a Google Document. The method of linking with Iowa
State’s Okta authentication system in the place of a stand-alone Google sign-in. Also the thought of

arranging courses in alphabetical order vs courses most used in the program was brought up. For
design choice of course arrangement, we decided to go with the alphabetical order due to ease of
coding and user friendliness. This will be a point to incorporate in the testing phase starting
November 1st.

3.3 PROPOSED DESIGN

There are two main methods to approach solving this problem, either having a web application or a
standalone application that students download whether on PC or mobile.

Web application

This design allows for the advisors to easily edit the catalog of classes and lets advisors view
student’s POS without any additional work for students to supply to their advisors. Team members
have plenty of experience with web applications. As a web application, a database is easy to
implement and can integrate with multiple sign-in apis. The database in question will be MySQL
and will sit on the same server that backend business logic will run on. Since web applications are
highly modifiable, almost all requirements can be implemented, whether new or original. There are
very few standards that apply to this project, most of which are simply IEEE cyber security
standards. As web applications already exist in a browser, it becomes simple to have multiple users
that can view separate POS, i.e. having advisors that can see multiple students but students can
only view their own POS.

This application would meet all of our requirements which we have worked with the client
to set. With the course catalog system database we will categorize the courses by college and
program similar to how Iowa State’s website works. Along with this courses will have parameters to
be marked as essential to the selected students program and year. Another parameter for the
courses will be their prerequisites courses.

There will be two types of accounts one for Students and one for Advisors. The logins for
both will be through the Google Sign-In API since the university provides students and faculty with
a google account already. The Student account is designed to use rules set for a four year plan set by
the advisors. They will be able to make a schedule tailored to the Electrical, Computer, Software, or
Cyber Security Engineering major. They will also be able to add in minors, double majors, graduate
programs (concurrent), and a MBA if they desire. If areas of a program of study have multiple
options there will be a drop down menu with available courses to pick. There will also be a general
search by program similar to the Access Plus course registration.

The Application will review the students POS decisions and provide warnings if certain
courses don’t have the necessary pre-reqs met, or if they are missing general requirements for
graduation. They will still be able to complete a program of study with warnings, but their advisor
would get to see straight away there is an issue.

The Advisor accounts would be the maintainers for the platform and have the unique
ability to add and remove courses to the database as well as new catalog rules, with the necessary
rule changes added. This will be made easy with the ability to duplicate a previous year's catalog
rules and make small changes. Advisors will also have access to their students' POS in order to
provide feedback within the application and approve any exceptions to a warning an individual
student may have. The application will also need to be easily maintained so that it can be used by
multiple future years of students.

Alternative approaches to implement this project would be to only have a database on a
remote server and have all business logic located in the client. This accomplishes the exact same
thing that having a server contain the business logic with the database. Another alternative would
be to handle signing into accounts with the application; this however, is a less viable alternative as

ISU already uses Okta and Google sign in for their accounts. Integrating into this system is simply
the only choice as creating a new system to integrate with the already existing system would be
more difficult than it is worth.

3.4 TECHNOLOGY CONSIDERATIONS

Having our application be a web based application, imposes many restrictions for the
application as a whole. First of all, without the internet, the application becomes unusable and the
entire functionality of the application becomes mute. Even with this drawback, a web application
allows advisors to be able to easily view the POS of their assigned students. Security however, is a
major concern with a web application that can be slightly mitigated with a downloadable
application. There are solutions to these problems, the first one being that the application will be
able to download the POS if the internet connection fails. On the concern of security, there are
plenty of tools available to find security vulnerabilities and there are plenty of tools available to fix
security vulnerabilities.

We considered several alternatives to a web application, and these included: mobile
Applications, Desktop Applications, and a Canvas Plugin. We found drawbacks in all of these
technologies that pushed web applications high above the rest for usability, convenience, and
redundancies reduction. We considered a mobile application since almost every student has some
mobile device. This would be convenient for their use, but since we cannot require a student to
have a mobile device, this technology does not meet our requirements. Another drawback would be
that we would need to develop at least two versions of the application for Apple and Android. While
we have a larger group, it would make more logistical sense to develop twice on one application
than half as much on two almost identical applications. The second technology consideration was
to create a desktop application. This technology is better suited for the project because all Iowa
State Students have access to computers through labs and laptop loaner programs. However, it still
faces the issue of needing to develop multiple systems. In this case, we would need an application
for at least a modern version of Windows, macOS, and Linux. Because of these duplicate
applications, we chose desktop applications. The last consideration was a canvas plugin. This was
almost an ideal solution because of the user's access to and familiarity with the Canvas program.
The drawback we faced was the unfamiliarity we had with developing tools for canvas. The team
also predicted that university and canvas would have issues with students messing with essential
parts of the application. After all these considerations, our group decided to move forward with a
web application.

3.5 DESIGN ANALYSIS

There have yet to be any major design modifications for our project. This is mainly due to having
well defined requirements and discussing a multitude of scenarios with our clients. However, in the
future, our project is designed to be modular in both its functionality and its expansion. One major
change that has happened in the creation of our application design was whether to handle logins
and accounts in the application or utilize already existing API’s for ISU accounts and logins.
Another change that we made early on was switching our end goal of a Canvas integration to a
general web application.

3.6 DEVELOPMENT PROCESS

For this project, the team is following a hybrid approach between Agile and Waterfall. The reason
for this approach comes down to the fact that communication with our client is vital to the success
of the project, but face-to-face communication is limited in scope and availability. It would be fair to
say that we are using Waterfall methodology while implementing aspects of the Agile methodology.
Along with the limitations in communication between the client and the team, the scope of the
project lends itself to the streamlined nature of the Waterfall approach.

3.7 DESIGN PLAN

● Application that utilizes Google sign in. (Front end Account)
● Internal Database that holds the entire list of classes for major. (Back end Class Database)
● Classes can be classified into different categories. (Back end Class Database)
● Select classes from a drop down list. (Front end Courses)
● Automatically checks for prerequisites and corequisites. (Front end Courses and Back end

Class Database)
● Academic advisors can view students’ POS. (Front end Advisors)
● Academic advisors can comment on students’ POS. (Front end Advisors)
● Application can be used by future students and is maintainable. (Modular Design)

Figure 2: Front-end Component Diagram

Figure 3: Back-end Component Diagram

4 Testing
Selenium will be the main tool for testing this project as it allows for unit and functional testing.
Selenium is an industry standard for testing. Its cross platform and browser capabilities will make it
a useful tool for testing our code. We will be testing the followings:

● If a student can search the courses they need.
● If the frontend can pass the user’s schedule to the backend after saving.
● If a prerequisite does not meet, an alert will show which course is it.
● If the comments from the advisors can be shown correctly on the students side.
● If the advisor can approve exceptions to the rules.
● If the schedule created is missing courses to complete the degree, an alert will show which

courses are missing.
● If advisors can edit, create, and delete courses, catalog rules and degree programs

4.1 UNIT TESTING

Tests will be written for each component of the software to ensure all components are functioning
as intended. Examples of possible units to be tested include: inputting valid and invalid
combinations of classes to see if the software correctly distinguishes between the two.

4.2 INTERFACE TESTING

Along with testing individual components, combinations of components will be tested as errors can
appear anywhere in the code. It is important to test combinations of components to ensure overall
functionality is maintained. Inputting full valid and invalid inputs to verify that our program is
working as intended. Another important component of interface testing is to ensure our program
interacts with the different API’s in the code properly. Lastly, the GUI will be tested to make sure the
user’s experience is satisfactory. This will be tested by a group of students taking the course in the
second half of the Fall semester.

4.3 ACCEPTANCE TESTING

We will write robust tests to show each requirement is met along with having some students from
S E or CPR E 166 use our product. Both of these classes will have the assignment to develop their
four year plan. We will have one class utilize our working application in order to complete this
assignment. From their experiences utilizing our application we will be able to test our application
in its real-world environment. Edge cases from our client to produce better testing to ensure the
best experience for the students and advisors using our software. These edge cases include the
logic behind prerequisites and corequisites being met, advisors being able to approve exceptions to
course and program requirements, and student saving degree programs while having another
browser session open. Another piece of acceptance testing will be the simultaneous use of the
program by the student and advisor editing and commenting.

4.4 RESULTS

Unit and Interface testing will be developed alongside the working project development in Fall 2021.
We will conduct the Acceptance testing with one section of either SE 166 or CPR E 166 around
midterms of the Fall 2021 Semester.

5 Implementation
We would be designing a web application to house the Program of Study. This application will be
supported by a database developed by the backend team. This database will store all the courses,
rules, and account privileges. The website will be developed by the frontend team, who will design
and create an easily interactable PoS which can be applied to the students 4 year plan. Our goal is to
have a working and tested product by shortly after the semester midpoint.

The product itself would be a web application written in JavaScript. This application will have two
account types one for students and one for advisors/faculty. The web app will store some
information from users, like their current 4 year plan as well as additional plans they chose to save.

6 Closing Material

6.1 CONCLUSION

In developing this plan we have laid out initial work outside of development, we will spend the next
period of time developing web scraping tools to create our course database. Our goal is to have a
working version of this application near midterms of the Fall 2021 semester. The web app will allow
for an easily editable, verifiable, viable, and accessible Program of Study for ECpE students. The
software will allow for the addition and modification of majors,minors, degrees, courses, and
courses. We believe a well developed web application will satisfy these needs and deliverables.

6.2 REFERENCES

N/A

6.3 APPENDICES

Figure 4: Sketch of potential website design

