
Iowa State University
Electronic Program of

Study
Final Report

Team 4

Tina Prouty (Adviser) Maruf Ahamed (Academic Advisor)

Elisabeth Bair (Meeting Facilitator), Andrew Goluch (Frontend Lead),
Lucas Bell-Steckel (Backend Lead), William Peng (Full-Stack

Coordinator), Cavin Leeds (Test Engineer), and Thomas Hotard
(Report Manager)

sddec21-04@iastate.edu

https://sddec21-04.sd.ece.iastate.edu/

Revised: December 8th, 2021

1 Overview

1.1 ACKNOWLEDGMENT

Special thanks to Patrick Determan, a colleague of Tina Prouty, who contributed
valuable insight to the design and functionality of this project.

1.2 PROBLEM AND PROJECT STATEMENT

Every student who attends Iowa State has certain coursework requirements they
need to fulfill before they graduate. Meeting all requirements can be confusing and
overwhelming, especially to freshman students who have a lot to learn and little
experience with the courses available. Because of this, every student in the
Electrical and Computer Engineering Department (including Software and Cyber
Security Engineering majors) needs to create a Program of Study (POS) in their
Introduction to Engineering course. These programs are checked by hand, taking
enormous amounts of time and leaving room for mistakes to be made.

The solution to this problem is an Electronic Program of Study. This program will
be electronic and create a simple and effective tool for the creation of a student’s
POS. This tool will include features like prerequisite checking, graduation
requirement assurance, different course requirements based on student catalog,
and more. All of these features will aid advisors and students to maximize their
time and provide powerful knowledge to ensure success in the selection of classes.

By the end of this project, there will be a web application with the capability to
store, update and validate the Programs of Study for students in Electrical,
Computer, Software, and Cyber Security Engineering. Students will be able to
create this POS, and advisors will be able to view students’ POS, update available
courses, and approve exceptions to general requirements. This program will be
accessible via a created account and will require minimal software updates going
forward, making this a tool that can be used well into the future.

1.3 INTENDED USERS AND USES

In this project, there are two primary users: students and advisors. These users
have different needs and uses for this program.

First, students need a way to create a POS that can be a living document with
immediate feedback about accuracy and potential errors. Most students make
some changes when they select their first year at Iowa State, so they need to be
able to access and edit their POS for at least four years after creation. Students also
need to have access to requirements and a list of courses that satisfy the

requirements of their catalog. They also need to receive advisor feedback and
identify errors and have some idea how to fix them.

Second and finally, advisors need to be able to make updates to degree
requirements, access student POS’s, and give feedback to students. They also need
to have access to all student programs. This will allow for time to be saved when
grading the POS assignment for the Intro to Engineering course.

1.4 FUNCTIONAL REQUIREMENTS

● Support the creation of programs of study for Electrical, Computer,
Software, and Cyber Security Engineering majors

● Require students to accurately complete a program of study with the goal of
graduation

● Provide warnings for missing classes
● Enable students to edit their program of study
● Allows advisors to add new classes to the program
● Classes are able to be labeled as required, based on a given catalog year
● Individual courses are able to have prerequisites that must be met within

the POS
● Advisors must be able to approve exceptions to general requirements
● Advisors are able to give feedback to a student’s POS
● Application can be used by future students and is maintainable

There are some functionalities not included in these requirements because they
are not necessary to a successful end product.

1.5 NON-FUNCTIONAL REQUIREMENTS

● Website should load within three seconds
● Website able to be maintained and continually improved
● Login information securely stored and transmitted, unauthenticated user

cannot view or save changes
● Checking the schedule takes less than two seconds

1.6 STANDARDS

The relevant standards to this project are P23026 - Systems and Software
Engineering -- Engineering and Management of Websites for Systems, Software,
and Services Information and IEEE/ISO/IEC 23026-2015 - ISO/IEC/IEEE
International Standard - Systems and software engineering - Engineering and
management of websites for systems, software, and services information. Both of
these standards inform the development and design of informational websites and
give goals on locating relevant and timely information, applying information

security management, facilitating ease of use, and providing for consistent and
efficient development and maintenance practices. In practice, these standards have
been applied to our project by informing how we planned to test the application
and created the non-functional requirements.

1.7 ENGINEERING CONSTRAINTS AND REQUIREMENTS

The only requirements our group will need are access to our git repository, working
code editors, database software, and access to any subscriptions we may need to
edit or test code. The school will need to provide a server to support the
application in the long term, though not for most of the development process.

2 Design

2.1 PREVIOUS WORK AND LITERATURE

There are no similar products that exist, though the advisors of the
EE/SE/CprE/CyE departments have implemented certain procedures for the
creation of a program of study for their students. Some of the previous methods
that advisors have had their students use to create their program of study(POS)
include filling out an Excel spreadsheet and filling out a pdf form. Both of these
previous methods come with serious drawbacks however, being clunky and tedious
to fill in as there is no convenient method to check for prerequisites or
corequisites. They do have the benefit of being commonly used formats and the
software to edit them are readily available.

2.2 DESIGN EVOLUTION FROM SE 491

For the backend, we used Django for the entirety of the backend implementation
instead of flask or Mysql libraries. The reason for the switch was due to Django
handling certain aspects of the application such as Users, authentication,
authorization, and support for Google integration.

Due to the university not having a database for all the available classes, the only
way we can get the classes is from the ISU catalog webpage. And because the
format for prerequisites is not consistent in the catalog page, we changed the
prerequisite checking for each class to checking what else is needed for completing
the degree.

Because we could not get the server working by ETG in time, there was not enough
time to have ETG set up and enable Okta for our project. So, we decided to use the
Django authentication system to set up accounts for the project.

We decided to move away from adding flowchart arrows into the view. This is
because of challenges with the arrows needing to be dynamic, as well as the issues
we faced with the prerequisites in the webscraper.

In addition, the largest evolution from 491’s design was the implementation of the
schedule validator/check schedule feature. Because of complicated boolean logic
and inconsistent pre-requisite standards in the course information, it was not
possible to implement prerequisite checking at this time. However, because the
goal of the project was to save advisors time in checking the schedules,
functionality was still added to check the core courses of each degree program.
This feature and functionality change was approved by our client.

2.3 SECURITY CONCERNS AND COUNTERMEASURES

Server: Currently, the server is not set up to handle https requests. This is due to
lack of time for requesting a SSL certificate through ISU’s IT Security Department.
A simple fix for this is simply to acquire a SSL certificate and configure Apache and
the server for https requests.

Okta: The application is not set up for 2FA with Okta. Anyone on the network can
register an account and use the service. To counter this the application would need
to be altered so as to use the Django module for Google/Okta integration.

3 Implementation
In general terms, we designed a web application to house the Program of Study.
This application is supported by a database developed by the backend team. This
database stores all the courses, degrees, users, their schedules and account
privileges. The website, developed by the frontend team, is designed to create an
easily interactable PoS which can be applied to the students 4 year plan. The
product itself is a web application written in JavaScript using JQuery and Django.
There are three account types, one for students, one for advisors/faculty, and one
for admins. The web app stores some information from users, like their current 4
year plan as well as additional plans they chose to save. The app also allows both
students and advisors to check their schedules against the core courses in a given
degree program.

The Django framework takes care of a lot of the back end implementation and lets
the back end be worked on as if it is at a high level. This included the log in,
authentication, database, and site navigation components.

The database has 4 models, Student, Advisor, Class, and Degree. The Student and
Advisor model has a one-to-one field connected to the Django.auth.user model.
The Class model stores all the courses in the ISU catalog. The Degree model stores
the required class for CYB E, S E, EE, and CPR E. Our database can be populated
with the thousands of Iowa State courses using a python web scraper.

The front end consists of a student view and account which can be utilized to
create and save schedule plans. The advisor account can view the students
schedule and type comments that the student can view.

The courses themselves are HTML div objects with onclick functions to display all
the relevant course information to students. They also use OnDrag event listeners
in conjunction with the semester boxes so that the user can drag and drop courses
into the semester of their choice.

Checking schedules/schedule validation was implemented using the list of courses
in a student’s schedule checked against the courses in a given degree. The degree
courses consist of a list of core courses and a list of courses that students are able
to choose from. After checking the student’s schedule against those lists, any
courses that are missing are displayed. Courses that are not core courses are also
displayed so that an advisor can see if other requirements (like general education
courses) are met.

For a more detailed implementation guide, see the operational manual in
Appendix I.

4 Testing
All testing was abandoned for the project due to delays in the project leading to a
late implementation of a working prototype. The original plan was to implement
both unit and interface testing through Selenium. Acceptance testing would have
been through the students taking the S E or CPR E 166 classes as an option for their
final project. A major contributor to the delays was the importing of the data.
Having been given no form of database for the classes, we resorted to using a
python web scraper. After some difficulties figuring out all the edge cases of the
formatting ISU’s azcourses’ website, a persistent challenge was interpreting the
prerequisites. Courses could have just class names and punctuation or they could
use english sentences or they could have a mix. With the severe inconsistencies,
prerequisite parsing and interpretation was significantly more complex and
challenging than initially believed.

5 Appendices

APPENDIX I- OPERATIONAL MANUAL

Server:

The server is being hosted by ETG. Jacob Grundmeier was our main
point of contact with ETG for the final server. A bash script to pull
from Gitlab named epos is located at /usr/local/bin.

Accessing the server:

SSH INFO:

Hostname: epos.ece.iastate.edu

User: vm-user

Password: Edcf0kZWxwNM

To run:

Without Pulling from the Git repository:

Nothing. As long as the Apache service is running the web app
will be running on the server.

Pulling from the Git repository:

Login into the server, and run sudo epos. Follow the given
instructions.

Website use:

To utilize the website as a student user the student would navigate to
epos.ece.iastate.edu and either log in or create an account.

(Login Page)epos.ece.iastate.edu/

If the student or advisor needs to create an account they click on the Signup
link. To login the user just enters username and password.

(registration page) epos.iastate.edu/registerPage/

http://epos.ece.iastate.edu
http://epos.ece.iastate.edu/registerPage/

When the user is registered they are directed to the login screen, where they
can login and be directed to the homepage. If a new advisor account is created
move to the advisor section.

Students

Once the students login they are taken to the student homepage where they
see a variety of options. The first thing students should do is click on the Edit
profile link to add profile information. Once the student clicks save text will pop
up saying “Saved Successfully” and the user can click the home link.

(User Profile) epos.ece.iastate.edu/userProfile

http://epos.ece.iastate.edu/userProfile

(Student Home Page) epos.ece.iastate.edu/studentPage

Now the student can begin adding courses to the schedule, if they would like to
search for a course they can use the search class section and enter in the
Department name and course number. The student can also search around a
course and the output will be the three courses before and after by course number
if applicable.

Searching for a course the department autofils

http://epos.ece.iastate.edu/studentPage

Searching around the course SE 309

Searching exactly for SE 309

The student can then search for the exact course to add it to their flowchart which
will add a draggable course box they can place into a semester. any class box can be
click dragged into a semester. for more information on any course the user can
click on the course and information will appear in the course description box.If the
user wants to delete a course they can drag the course over the red trashcan and
the course will be removed from the screen. The student also has full control over
the number of semesters with the default semester always available for transfer
credit. The student can click on the Add semester and Remove semester buttons to
add add and remove respectively. At any point the student can click submit to save
their progress.

Dragging a course into a semester

clicking on a course to get relevant details

Students can also check their program of study against the core curriculum for
Software Engineering, Computer Engineering, Electrical Engineering, and Cyber
Engineering. by selecting a degree and clicking the check schedule button. Then a list of
all missing courses will be generated in red based on the courses in the current four year
plan. If a student has courses that don’t count for the core degre requirement they will
appear in the Other corses section.

Result of check schedule

Example of someone with an SE degree checking against the CYB E degree

To save the student time they can generate all the needed courses for a
specific degree by selecting the degree in the sane way to the step above and
clicking add Core courses. The display will show courses in blue which are all
required and then courses in color pairing where there are multiple options for a
degree requirement. Lastly the student can view any feedback written by an
advisor in blue text on the page.

Output of Add core courses schedules

Advisor comments

Example of SE schedule.

Advisor

The three steps below will take an already created account and transform it into an Advisor
account. The Advisors will create their accounts and login on the pages as students.

1. login to admin page at epos.ece.iastate.edu/admin/ (to create an admin account,
run python manage.py createsuperuser then python manage.py makemigrations
and python manage.py migrate)

(admin login) epos.ece.iastate.edu/admin/

2. In this page admin users can modify privileges of accounts to give certain
accounts either advisor or admin privileges. To add an advisor click on
“users” and then the account you wish to make an advisor

3. Then under permissions the user needs to be added to the advisor group
and removed from the student group, this is done by clicking on the name
of the group and then the right or left arrow

Once an advisor is created they can login to go to the advisor home page. In
this page advisors can search for a student by full name and see their schedule.
They can write any comments into the comments box and then clicking submit to
share the comments with the student. Similar to students the advisor can check
their schedule against the degree plans for Software Engineering, Computer
Engineering, Electrical Engineering, and Cyber Engineering. by selecting a degree and
clicking the check schedule button.

Advisor home page

Advisor searching for student “New Student” viewing the schedule and adding comments

Checking schedule with a missing requirement

